Quantification and Analysis of Icebergs in a Tidewater Glacier Fjord Using an Object-Based Approach
نویسندگان
چکیده
Tidewater glaciers are glaciers that terminate in, and calve icebergs into, the ocean. In addition to the influence that tidewater glaciers have on physical and chemical oceanography, floating icebergs serve as habitat for marine animals such as harbor seals (Phoca vitulina richardii). The availability and spatial distribution of glacier ice in the fjords is likely a key environmental variable that influences the abundance and distribution of selected marine mammals; however, the amount of ice and the fine-scale characteristics of ice in fjords have not been systematically quantified. Given the predicted changes in glacier habitat, there is a need for the development of methods that could be broadly applied to quantify changes in available ice habitat in tidewater glacier fjords. We present a case study to describe a novel method that uses object-based image analysis (OBIA) to classify floating glacier ice in a tidewater glacier fjord from high-resolution aerial digital imagery. Our objectives were to (i) develop workflows and rule sets to classify high spatial resolution airborne imagery of floating glacier ice; (ii) quantify the amount and fine-scale characteristics of floating glacier ice; (iii) and develop processes for automating the object-based analysis of floating glacier ice for large number of images from a representative survey day during June 2007 in Johns Hopkins Inlet (JHI), a tidewater glacier fjord in Glacier Bay National Park, southeastern Alaska. On 18 June 2007, JHI was comprised of brash ice ([Formula: see text] = 45.2%, SD = 41.5%), water ([Formula: see text] = 52.7%, SD = 42.3%), and icebergs ([Formula: see text] = 2.1%, SD = 1.4%). Average iceberg size per scene was 5.7 m2 (SD = 2.6 m2). We estimate the total area (± uncertainty) of iceberg habitat in the fjord to be 455,400 ± 123,000 m2. The method works well for classifying icebergs across scenes (classification accuracy of 75.6%); the largest classification errors occur in areas with densely-packed ice, low contrast between neighboring ice cover, or dark or sediment-covered ice, where icebergs may be misclassified as brash ice about 20% of the time. OBIA is a powerful image classification tool, and the method we present could be adapted and applied to other ice habitats, such as sea ice, to assess changes in ice characteristics and availability.
منابع مشابه
Declines in Harbor Seal (phoca Vitulina) Numbers in Glacier Bay National Park, Alaska, 1992–2002
Glacier Bay National Park had one of the largest breeding aggregations of harbor seals in Alaska, and it is functionally the only marine reserve for harbor seals in Alaska; yet, numbers of seals in the Bay are declining rapidly. Understanding why seals in Glacier Bay are declining may clarify their minimal habitat needs. We estimated population trends using models that controlled for environmen...
متن کاملContrasts in the response of adjacent fjords and glaciers to ice-sheet surface melt in West Greenland
Neighboring tidewater glaciers often exhibit asynchronous dynamic behavior, despite relatively uniform regional atmospheric and oceanic forcings. This variability may be controlled by a combination of local factors, including glacier and fjord geometry, fjord heat content and circulation, and glacier surface melt. In order to characterize and understand contrasts in adjacent tidewater glacier a...
متن کاملSubmarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, U.S.A
Heat, freshand sea-water balances indicate that the late-summer rate of submarine melting at the terminus of tidewater LeConte Glacier, Alaska, U.S.A., in 2000 was about 12mdw.e., averaged over the submerged face. This is 57% of the estimated total ice loss at the terminus (calving plus melting) at this time. Submarine melting may thus providea significantcontribution to the overall ablationof ...
متن کاملEstimating Spring Terminus Submarine Melt Rates at a Greenlandic Tidewater Glacier Using Satellite Imagery
Oceanic forcing of the Greenland Ice Sheet is believed to promote widespread thinning at tidewater glaciers, with submarine melting proposed as a potential trigger of increased glacier calving, retreat, and subsequent acceleration. The precise mechanism(s) driving glacier instability, however, remain poorly understood, and while increasing evidence points to the importance of submarine melting,...
متن کاملGlacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland
[1] The recent loss of Jakobshavn Isbræ’s extensive floating ice tongue has been accompanied by a change in near terminus behavior. Calving currently occurs primarily in summer from a grounded terminus, involves the detachment and overturning of several icebergs within 30–60 min, and produces long-lasting and far-reaching ocean waves and seismic signals, including ‘‘glacial earthquakes’’. Calvi...
متن کامل